# Constructing the Japanese problem figure

In this post we will construct the figure of the last post. I will leave the proof open. But i will post it if i get asked.

Problem:
Let a square abcd be given. A semicircle k in the square with the diameter ab is given. Construct a circle in the square, which touches k , cb and dc.

Solution:

First we construct the line through a and c.  We extend the side cb to a point e so that cb=be. Then we construct the tangent line to the semicircle k. Let the point on which the tangent line touches k be denoted as x. We construct a perpendicular line to the tangent line through x. The point where this line crosses the line ac ,we denote as n.
Then n is the center of the circle and nx is the radius of the circle we were searching for.

# A Japanese problem

Today I will introduce a Japanese problem. In Japan problems like this are called a sangaku. Monks used to write sangaku’s on wood plates, which then would be sold to samurai for them to solve. In this post I will solve the problem and in the next one, I will construct the figure which will be presented.

The Problem:
Let abcd be a square. We construct a semicircle over ad with the radius of half the side length of the square. Let K be a circle which touches the semicircle and bc and cd. As the picture below shows:

Solution:
We construct a parallel line through the middle point of ad parallel to ab. Also we construct a parallel line parallel to ad through the middle point of K. Let the interception point be denoted as y. Last we construct the line from the middle point of ad and the center of K.
This forms a rightangeled triangle y and the center points of the two circles.

We denote the radius of K as r and the radius of the semicircle as a/2.
The sides of the triangle which we constructed are:
r+a/2 , a/2-r and a-r.
After the pythagorean theorem we have the following equlity.
(r+a/2)^2=(a/2-r)^2+(a-r)^2.
Solving the equality offers
r=(2-sqr (3))a.